

TransMilenio goes green

Die Elektrifizierung eines der größten Bus Rapid Transit Systeme (BRT) der Welt

Trolleymotion
4. Internationale E-Bus-Konferenz, 2014, Hamburg

Institut für Bahntechnik GmbH Dipl.-Ing. Sven Körner

IFB - Institut für Bahntechnik GmbH

Leistungsbereiche

- Sicherungssysteme und Betriebsleittechnik
- Systemtechnik Fahrzeug / Fahrweg
- Antriebstechnik und Energieversorgung
- Fahrleitung, Rückstrom, Erdung
- Fahrzeugdynamik
- Projektsteuerung und –management
- Consulting und Planung
- Softwareentwicklung
- Zulassung und Prüfstelle
- Gutachter des Eisenbahn-Bundesamtes (EBA)

1. Einleitung

2. Projekthintergründe

- Bus Rapid Transit System
- Kolumbien
- Energieerzeugung
- TransMilenio

3. Simulationssoftware

4. Einzelaspekte der Umsetzung

- Modellierung der Streckeninfrastruktur
- Modellierung der Fahrzeuge
- Modellierung des Fahrplans
- Elektrische Infrastruktur

5. Auswahl einzelner Ergebnisse

6. Zusammenfassung

- Machbarkeitsstudie Elektrifizierung des BRT TransMilenio in Bogotá
- Verschiedene Szenarien sollen die prinzipielle technische Machbarkeit eines Oberleitungsbussystems zeigen
- Verkehrsleistung des Systems: 47.000 paxphpd in Spitzenstunde
- Auslegung des elektrischen Netzes hinsichtlich:
 - Anzahl und Position der Unterwerke
 - Auswahl geeigneter Fahrleitung
 - Dimensionierung elektrischer Betriebsmittel
 - Einhaltung normativer Grenzen
- Vorzugsvariante

Typische Verkehrssituation BRT

Bus Rapid Transit System

- BRT auch Busway oder Metrobus
- Busliniensystem mit eigenem Fahrweg
- feste Haltestellenpositionen

TransMilenio, Schwachlaststunde

- Busse mit sehr hohen Fahrgastkapazitäten
- Ticketkauf und Entwertung findet im Stationsbereich statt
- hohe Geschwindigkeit, Zuverlässigkeit und Komfort eines schienengebundenen Systems sollen mit Flexibilität und den niedrigen Anschaffungskosten eines Dieselbusses kombiniert werden

Projekthintergründe

Kolumbien

- im Norden Südamerikas
- Anden im Hinterland
- Großteil der Bevölkerung in Städten im Hinterland
- gering besiedelte Waldgebiete
- Hauptstadt: Bogotá
- Einwohnerzahl: 715.000 (1951)

7.6 Mio (2013)

8.4 Mio (2020)

Elektrische Energieerzeugung:

- 64 % aus Wasserkraft
- 32 % fossile Brennstoffe
- 4 % aus Erneuerbaren (kleine Wasserkraftwerke, Biomasse, Wind)

Verwaltungsbezirke Kolumbien, Quelle: WikiTravel

Projekthintergründe

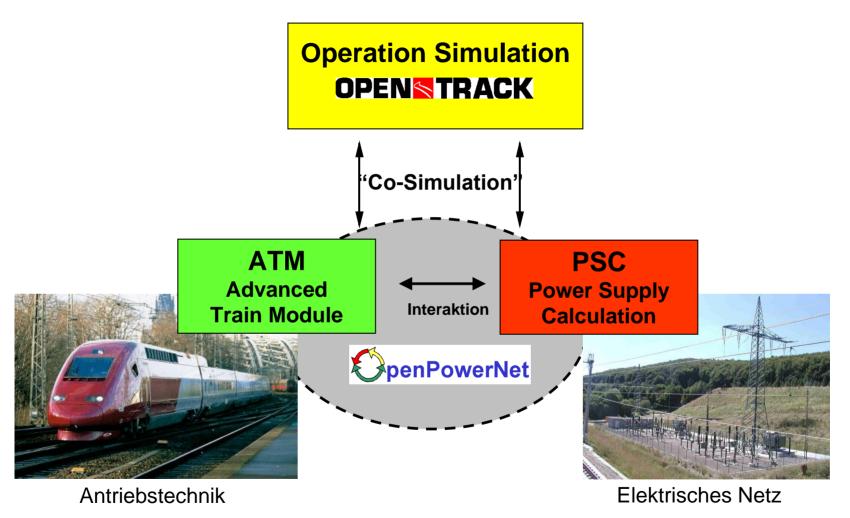
TransMilenio

- 1998 Verkehrskonzept für Bogotá
 - Radwegenetz
 - Fußgängerzonen in der City
 - Autofreie Tage im Jahr
 - BRT: TransMilenio
- erfolgreiches PPP-Projekt
- Vorbildmodell in Kolumbien und weltweit (schnelle Einführung, geringe Kosten und Funktionalität)
- Nach Einführung 2000:
 - Verringerung Anteil MIV
 - Zunahme des Nichtmotorisierten Verkehrs
 - Rückgang der Unfallzahlen
 - Verringerung der Schadstoffemissionen
- Kapazitätsprobleme
- Zukunftsweisende Transporttechnologien
 → Trolleybussystem

Busverkehr in Bogotá vor der Einführung des TransMilenio-Konzepts, [5]

Überlastung TransMilenio, [7]

Simulation elektrischer Netze mit ortsveränderlichen Verbrauchern


Die **Lastflüsse** und der elektrische **Energiebedarf** werden von Fahrzeugen und von der Gestaltung des elektrischen Netzes bestimmt:

- Es gibt zeitlich und örtlich veränderliche Verbraucher.
- Netzstruktur und Spannung bestimmen den Lastfluss.
- Das Bahnstromsystem kann den Energiebedarf beeinflussen.

Mit der Simulation werden Analysen und Prognosen ermöglicht:

- zum Leistungs- und Energiebedarf
- für die technische Gestaltung und Dimensionierung der Anlagen

Simulationsmodule der gekoppelten Online-Simulation

Einzelaspekte der Umsetzung

Modellierung des Streckeninfrastruktur

- Aufbereitung der GPS-Daten
- 116 Stationen auf ca. 110 km
- Implementierung von Lichtsignalanlagen
- 11 Korridore werden zu 25 Hauptlinien kombiniert
- 100 Buslinien verkehren von 05:00 bis 23:00

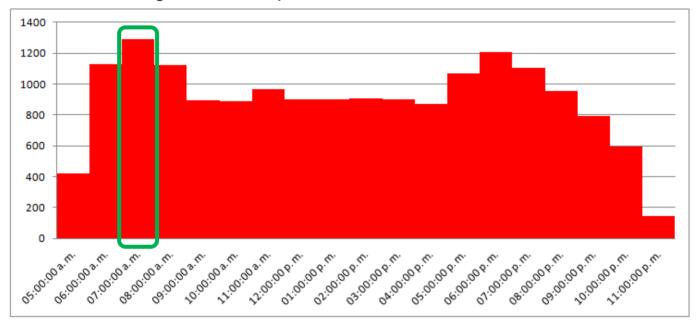
Streckenverlauf TRANSMILENIO

Einzelaspekte der Umsetzung

Modellierung der Fahrzeuge

- zwei Fahrzeugtypen
- Zugkraft-Geschwindigkeits-Diagramme
- Fahrwiderstandskurven
- weitere Parameter
 - Masse, Adhäsionsmasse
 - Massenfaktor
 - Länge, ...
- elektrische Parameter
 - Grundparameter
 - Antriebsstrang
 - Hilfsbetriebe

Doppelgelenktrolleybus



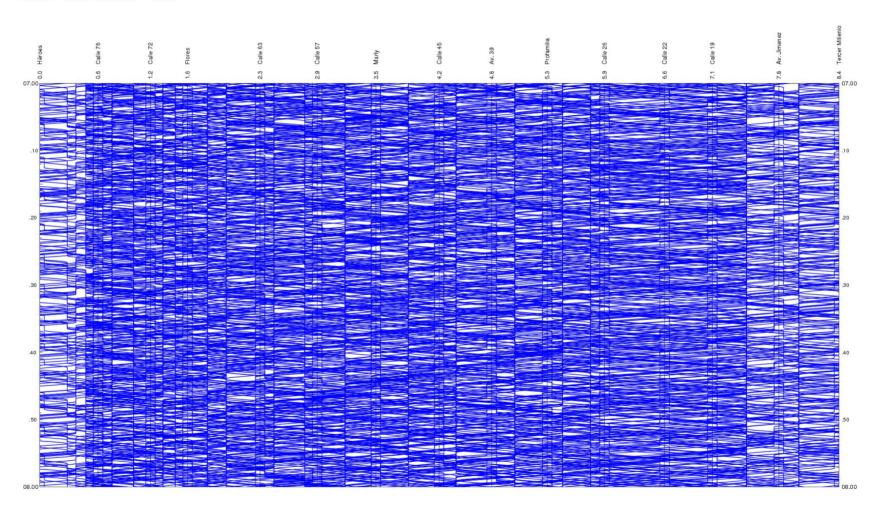
Gelenktrolleybus

Modellierung des Fahrplans

Betrieb der morgendlichen Spitzenstunde

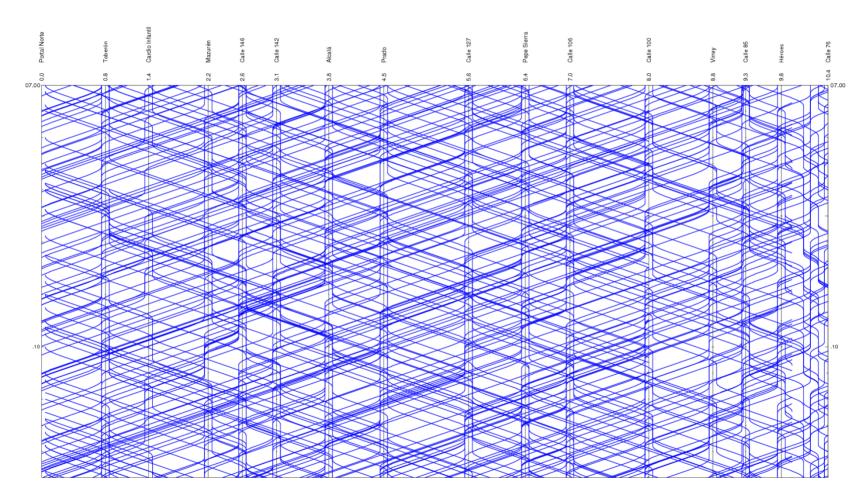
Anzahl der Busse im Tagesverlauf, Quelle: Ausschreibungsunterlagen

67 Buslinien, ca. 1200 Bussen im Streckennetz

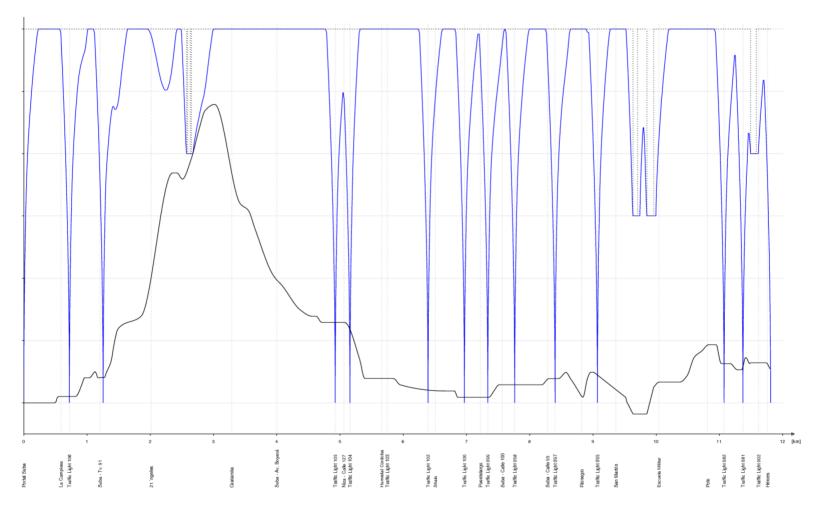

Elektrische Infrastruktur

- Modellierung der elektrischen Infrastruktur für unterschiedliche Szenarien (Fahrzeugtyp, Fahrzeuganzahl/Elektrifizierungsgrad, mit und ohne Rekuperation)
- Umsetzung:
 - Festlegung des Spannungssystems
 - Festlegung der Speiseart
 - Bestimmung der Anzahl an Gleichrichterunterwerken (GUW)
 - optimale Positionierung der GUW
 - Nachweis Spannungshaltung
 - Bestimmung des Leistungs- und Energiebedarfs
 - Werte für Dimensionierung elektrischer Betriebsmittel
 - Bestimmung der Anzahl möglicher Trolleybusse
- Gekoppelte Betriebssimulation und elektrische Netzberechnung

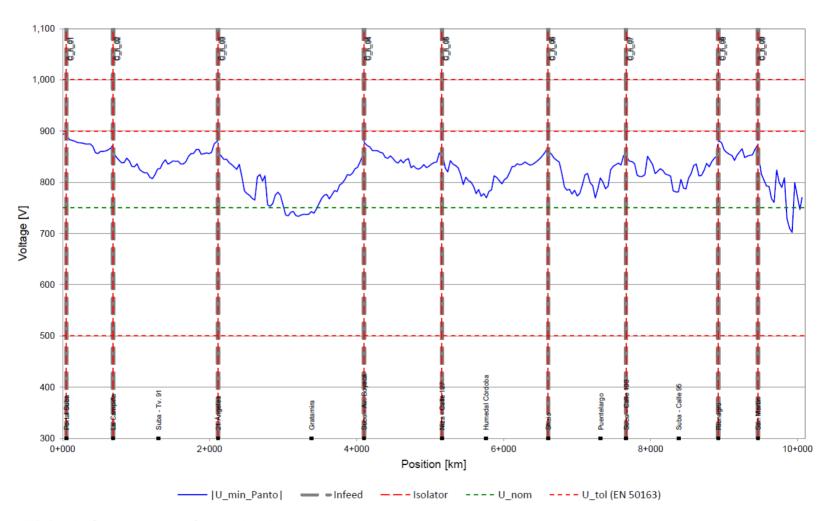
Auswahl einzelner Ergebnisse Bildfahrplan, Korridor A, 07:00-08:00


Héroes - Tercer Milienio Troncal A

Auswahl einzelner Ergebnisse Bildfahrplan, Korridor B, 07:00-07:15

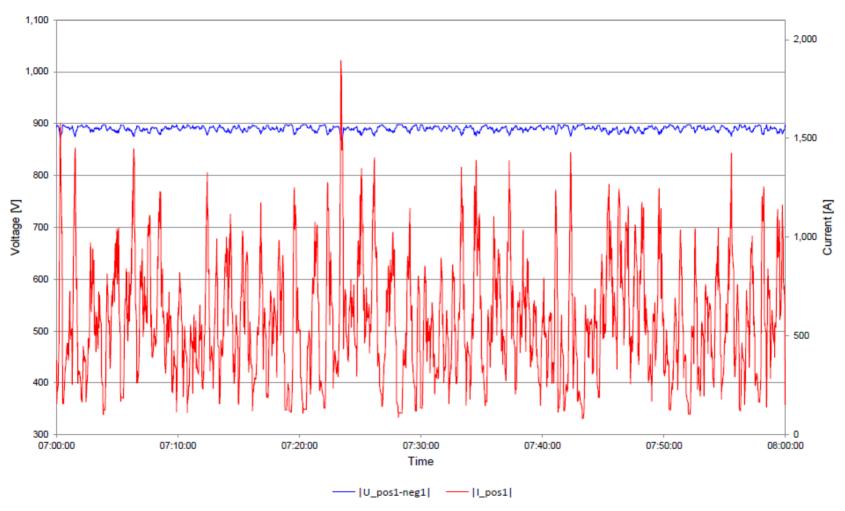


Auswahl einzelner Ergebnisse Fahrprofil und Topologie



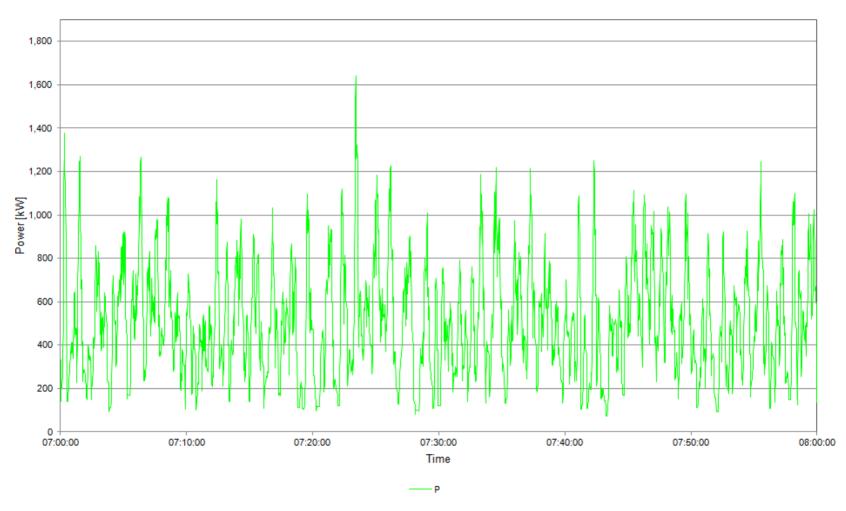
Geschwindigkeits- (blau) und Höhenprofil (schwarz)

Auswahl einzelner Ergebnisse Spannungshaltung



Minimale Spannung am Stromabnehmer

Auswahl einzelner Ergebnisse Zeitliche Verläufe elektrischer Größen



Strom und Spannungsverlauf an der Sammelschiene eines Unterwerks

Auswahl einzelner Ergebnisse Zeitliche Verläufe elektrischer Größen

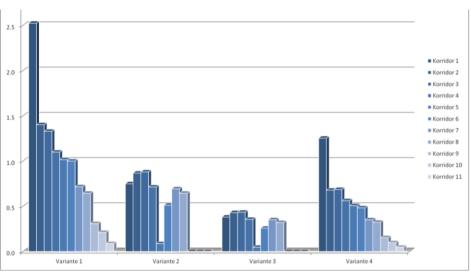
Leistungsverlauf in einem Unterwerk

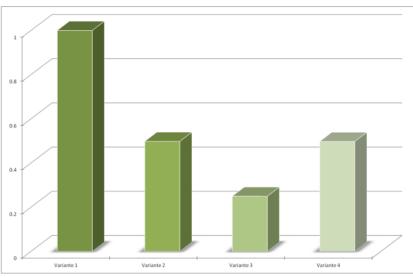
Auswahl einzelner Ergebnisse Tabellarische Übersichten

Substation	Device	Туре	Signal	$\ \ _{\max}$	I _{rms}	I _{rms15}	S _{max}	P _{max}	$ \mathbf{Q} _{\text{max}}$	P_{rms}	P _{rms15}	E	Eloss
				Α	Α	Α	kVA	kW	kvar	kW	kW	kWh	kWh
A_n_04	rec_n1	Rec	total	1894	641	675	1644	1644	0	568	597	508	6.993
A_n_04	rec_n1	Rec	out	1894	641	675	1644	1644	0	568	597	508	6.993
A_n_04	rec_n1	Rec	in	0	0	0	0	0	0	0	0	0	0.000
A_n_04	rec_n2	Rec		1129		369	995	995	0	297	328	243	1.887
A_n_04	rec_n2	Rec	out	1129	333	369	995	995	0	297	328	243	1.887
A_n_04	rec_n2	Rec	in	0	0	0	0	0	0	0	0	0	0.000

Substation	Busbar	Feeder	I _{max}	I _{rms}	I _{rms15}	E _{loss} kWh
A_n_04	neg1		1894	641	675	-
A_n_04	neg1	rf_n1	1894	641	675	2.262
A_n_04	neg2		1129	333	369	-
A_n_04	neg2	rf_n2	1129	333	369	0.611
A_n_04	pos1		1894	641	675	-
A_n_04	pos1	f_n1	1894	641	675	2.262
A_n_04	pos2		1129	333	369	-
A_n_04	pos2	f_n2	1129	333	369	0.611

Übersicht elektrischer Größen im Unterwerk


Übersicht über elektrische Größen Sammelschiene und Kabel


Course	Formation	TKT tkm	E _{total} kWh	E _{specific} Wh/tkm	E _{consumed} kWh	E _{recovered} kWh	η _{regeneration} %	E _{mech_drive} kWh	E _{mech_brake_req} kWh	E _{mech_brake_ach} kWh	η _{brake} %	η _{brake_net} %
C19a 7	Bogota Hess DGTB	279	21	75	38	17	45	26	30	23	75	57
C19a 9	Bogota Hess DGTB	134	8	61	16	8	49	11	13	10	77	58
C29 11	Bogota Hess DGTB	196	16	79	28	13	45	19	22	17	76	58
C29 13	Bogota Hess DGTB	278	20	70	36	16	46	25	27	22	79	60
C29 15	Bogota Hess DGTB	278	20	71	36	16	45	25	27	21	78	59
C29 17	Bogota Hess DGTB	278	19	69	36	17	47	25	27	22	80	61
C29 19	Bogota Hess DGTB	278	19	69	36	17	46	25	27	22	80	61
C29 21	Bogota Hess DGTB	278	20	71	36	16	45	25	27	21	79	60

Übersicht fahrzeugspezifischer Werte

Auswahl einzelner Ergebnisse Grafischer Variantenvergleich

Normierter korridorspezifischer Gesamtenergiebedarf für 4 Szenarien

Normierter Gesamtenergiebedarf für 4 Szenarien

Variantenspezifische Ergebnisse

- Übersichten mit Unterwerksstandorten
- Anzahl Unterwerke und Ausstattung
- Energiebedarf f
 ür einzelne Korridore und Gesamtnetz
- Anzahl Trolleybusse

Zusammenfassung

- Machbarkeitsstudie zur Elektrifizierung des leistungsfähigsten BRT Systems der Welt
- Darstellung von Projekthintergründen
- Nutzung moderner und leistungsfähiger Simulationssoftware
- Einzelaspekte der Umsetzung
- Einzelergebnisse
- Auftraggeber wird Pläne konkretisieren und in weitere Planungsphasen übergehen
- Spezifischer Energiemix in Kolumbien ermöglicht durch Nutzung regenerativ erzeugter elektrischer Energie einen

nachhaltigen und leistungsfähigen öffentlichen Personennahverkehr

Vielen Dank!

Dipl.-Ing. Sven Körner

Tel.: +49 351 87759 – 52 Email: sk@bahntechnik.de

Institut für Bahntechnik GmbH

Niederlassung Dresden Wiener Straße 114-116, 01219 Dresden www.bahntechnik.de

Tel.: +49 351 877 59 – 0 Fax: +49 351 877 59 – 90

Email: ifb-dresden@bahntechnik.de

www.openpowernet.de

Quellen

[1]	www.OpenPowerNet.com
[2]	www.OpenTrack.ch
[3]	Stephan, A. (2008): OpenPowerNet – Simulation of Railway Power Supply Systems, Comprail, Toledo-Spanien, Wessex Institute of Technology.
[4]	Ufert, M., Körner, S. (11/2013): Bahnbetriebssimulation mit online gekoppelter elektrischer Netzberechnung, Verkehr und Technik, Erich Schmidt Verlag.
[5]	http://mikesbogotablog.blogspot.de/2010/07/here-comes- sitp.html, 07.01.2013
[6]	Dario Hidalgo (2008): Why Is TransMilenio still so special?, http://thecityfix.com/blog/why-is-transmilenio-still-so-special/, 07.01.2013, http://creativecommons.org/licenses/by-nc-nd/3.0/
[7]	http://www.desdeabajo.info/images/stories/bfebrero/masivo.jpg, 07.01.2013